Natural language processing for identification of refractory status epilepticus in children.
Journal:
Epilepsia
PMID:
37804085
Abstract
OBJECTIVE: Pediatric status epilepticus is one of the most frequent pediatric emergencies, with high mortality and morbidity. Utilizing electronic health records (EHRs) permits analysis of care approaches and disease outcomes at a lower cost than prospective research. However, reviewing EHR manually is time intensive. We aimed to compare refractory status epilepticus (rSE) cases identified by human EHR review with a natural language processing (NLP)-assisted rSE screen followed by a manual review.