Characterization of lamb shashliks with different roasting methods by intelligent sensory technologies and GC-MS to simulate human muti-sensation: Based on multimodal deep learning.

Journal: Food chemistry
PMID:

Abstract

To simulate the functions of olfaction, gustation, vision, and oral touch, intelligent sensory technologies have been developed. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) with electronic noses (E-noses), electronic tongues (E-tongues), computer vision (CVs), and texture analyzers (TAs) was applied for sensory characterization of lamb shashliks (LSs) with various roasting methods. A total of 56 VOCs in lamb shashliks with five roasting methods were identified by HS-SPME/GC-MS, and 21 VOCs were identified as key compounds based on OAV (>1). Cross-channel sensory Transformer (CCST) was also proposed and used to predict 19 sensory attributes and their lamb shashlik scores with different roasting methods. The model achieved satisfactory results in the prediction set (R = 0.964). This study shows that a multimodal deep learning model can be used to simulate assessor, and it is feasible to guide and correct sensory evaluation.

Authors

  • Che Shen
    College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Engineering Research Center of Bio process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
  • Guanhua Cai
    College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
  • Jiaqi Tian
    College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.
  • Xinnan Wu
    College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
  • Meiqi Ding
    College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
  • Bo Wang
    Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China.
  • Dengyong Liu
    College of Food Science and Technology, Bohai University, Jinzhou 121013, China. Electronic address: jz_dyliu@126.com.