Performance analysis of conventional and AI-based variant callers using short and long reads.
Journal:
BMC bioinformatics
PMID:
38097928
Abstract
BACKGROUND: The accurate detection of variants is essential for genomics-based studies. Currently, there are various tools designed to detect genomic variants, however, it has always been a challenge to decide which tool to use, especially when various major genome projects have chosen to use different tools. Thus far, most of the existing tools were mainly developed to work on short-read data (i.e., Illumina); however, other sequencing technologies (e.g. PacBio, and Oxford Nanopore) have recently shown that they can also be used for variant calling. In addition, with the emergence of artificial intelligence (AI)-based variant calling tools, there is a pressing need to compare these tools in terms of efficiency, accuracy, computational power, and ease of use.