Diagnostic accuracy of artificial intelligence in detecting retinitis pigmentosa: A systematic review and meta-analysis.

Journal: Survey of ophthalmology
PMID:

Abstract

Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of AI in detecting RP using various ophthalmic images. We conducted a systematic search on PubMed, Scopus, and Web of Science databases on December 31, 2022. We included studies in the English language that used any ophthalmic imaging modality, such as OCT or fundus photography, used any AI technologies, had at least an expert in ophthalmology as a reference standard, and proposed an AI algorithm able to distinguish between images with and without retinitis pigmentosa features. We considered the sensitivity, specificity, and area under the curve (AUC) as the main measures of accuracy. We had a total of 14 studies in the qualitative analysis and 10 studies in the quantitative analysis. In total, the studies included in the meta-analysis dealt with 920,162 images. Overall, AI showed an excellent performance in detecting RP with pooled sensitivity and specificity of 0.985 [95%CI: 0.948-0.996], 0.993 [95%CI: 0.982-0.997] respectively. The area under the receiver operating characteristic (AUROC), using a random-effect model, was calculated to be 0.999 [95%CI: 0.998-1.000; P < 0.001]. The Zhou and Dendukuri I² test revealed a low level of heterogeneity between the studies, with [I = 19.94%] for sensitivity and [I = 21.07%] for specificity. The bivariate I² [20.33%] also suggested a low degree of heterogeneity. We found evidence supporting the accuracy of AI in the detection of RP; however, the level of heterogeneity between the studies was low.

Authors

  • Ayman Mohammed Musleh
    Faculty of Medicine, The University of Jordan, Amman, Jordan.
  • Saif Aldeen AlRyalat
    Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
  • Mohammad Naim Abid
    Marka Specialty Hospital, Amman, Jordan; Valley Retina Institute, P.A., McAllen, TX, USA.
  • Yahia Salem
    Faculty of Medicine, The University of Jordan, Amman, Jordan.
  • Haitham Mounir Hamila
    Faculty of Medicine, The University of Jordan, Amman, Jordan.
  • Ahmed B Sallam