A Compact Graph Convolutional Network With Adaptive Functional Connectivity for Seizure Prediction.

Journal: IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Published Date:

Abstract

Seizure prediction using EEG has significant implications for the daily monitoring and treatment of epilepsy patients. However, the task is challenging due to the underlying spatiotemporal correlations and patient heterogeneity. Traditional methods often use large-scale models with independent components to capture the spatial and temporal features of EEG separately or explore shared patterns among patients with the help of pre-defined functional connectivity. In this paper, we propose a compact model, called the graph convolutional network based on adaptive functional connectivity (AFC-GCN), for seizure prediction. The model can adaptively infer evolution of functional connectivity in epilepsy patients during seizures through data-driven methods and synchronously analyze spatiotemporal response of functional connectivity in multiple topologies. On CHB-MIT datasets, the experimental results demonstrate that AFC-GCN achieves accurate and robust performance with low complexity. (AUC: 0.9820, accuracy: 0.9815, sensitivity: 0.9802, FPR: 0.0172). The proposed method has the potential to predict seizure during daily monitoring.

Authors

  • Boxuan Wei
    School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China.
  • Lu Xu
    School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Heifei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China; School of Biomedical Engineering, Anhui Medical University, Heifei, China.
  • Jicong Zhang
    School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Heifei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China; School of Biomedical Engineering, Anhui Medical University, Heifei, China. Electronic address: jicongzhang@buaa.edu.cn.