Enhancing reginal wall abnormality detection accuracy: Integrating machine learning, optical flow algorithms, and temporal convolutional networks in multi-view echocardiography.
Journal:
PloS one
PMID:
39264929
Abstract
BACKGROUND: Regional Wall Motion Abnormality (RWMA) serves as an early indicator of myocardial infarction (MI), the global leader in mortality. Accurate and early detection of RWMA is vital for the successful treatment of MI. Current automated echocardiography analyses typically concentrate on peak values from left ventricular (LV) displacement curves, based on LV contour annotations or key frames during the heart's systolic or diastolic phases within a single echocardiographic cycle. This approach may overlook the rich motion field features available in multi-cycle cardiac data, which could enhance RWMA detection.