Separable amygdala activation patterns in the evaluations of robots.
Journal:
Cerebral cortex (New York, N.Y. : 1991)
PMID:
38383721
Abstract
Given the increasing presence of robots in everyday environments and the significant challenge posed by social interactions with robots, it is crucial to gain a deeper understanding into the social evaluations of robots. One potentially effective approach to comprehend the fundamental processes underlying controlled and automatic evaluations of robots is to probe brain response to different perception levels of robot-related stimuli. Here, we investigate controlled and automatic evaluations of robots based on brain responses during viewing of suprathreshold (duration: 200 ms) and subthreshold (duration: 17 ms) humanoid robot stimuli. Our behavioral analysis revealed that despite participants' self-reported positive attitudes, they held negative implicit attitudes toward humanoid robots. Neuroimaging analysis indicated that subthreshold presentation of humanoid robot stimuli elicited significant activation in the left amygdala, which was associated with negative implicit attitudes. Conversely, no significant left amygdala activation was observed during suprathreshold presentation. Following successful attenuation of negative attitudes, the left amygdala response to subthreshold presentation of humanoid robot stimuli decreased, and this decrease correlated positively with the reduction in negative attitudes. These findings provide evidence for separable patterns of amygdala activation between controlled and automatic processing of robots, suggesting that controlled evaluations may influence automatic evaluations of robots.