Improved image quality in CT pulmonary angiography using deep learning-based image reconstruction.

Journal: Scientific reports
PMID:

Abstract

We investigated the effect of deep learning-based image reconstruction (DLIR) compared to iterative reconstruction on image quality in CT pulmonary angiography (CTPA) for suspected pulmonary embolism (PE). For 220 patients with suspected PE, CTPA studies were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASiR-V 30%, 60% and 90%) and DLIR (low, medium and high strength). Contrast-to-noise ratio (CNR) served as the primary parameter of objective image quality. Subgroup analyses were performed for normal weight, overweight and obese individuals. For patients with confirmed PE (n = 40), we further measured PE-specific CNR. Subjective image quality was assessed independently by two experienced radiologists. CNR was lowest for FBP and enhanced with increasing levels of ASiR-V and, even more with increasing strength of DLIR. High strength DLIR resulted in an additional improvement in CNR by 29-67% compared to ASiR-V 90% (p < 0.05). PE-specific CNR increased by 75% compared to ASiR-V 90% (p < 0.05). Subjective image quality was significantly higher for medium and high strength DLIR compared to all other image reconstructions (p < 0.05). In CT pulmonary angiography, DLIR significantly outperforms iterative reconstruction for increasing objective and subjective image quality. This may allow for further reductions in radiation exposure in suspected PE.

Authors

  • Ann-Christin Klemenz
    Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Schillingallee 36, 18057, Rostock, Germany.
  • Lasse Albrecht
    Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Schillingallee 36, 18057, Rostock, Germany.
  • Mathias Manzke
    Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Schillingallee 36, 18057, Rostock, Germany.
  • Antonia Dalmer
    Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Schillingallee 36, 18057, Rostock, Germany.
  • Benjamin Böttcher
    Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
  • Alexey Surov
    Department of Diagnostic and Interventional Radiology, University of Leip-zig, Leipzig, Germany.
  • Marc-André Weber
    Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
  • Felix G Meinel
    Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany.