End-to-end volumetric segmentation of white matter hyperintensities using deep learning.
Journal:
Computer methods and programs in biomedicine
Published Date:
Jan 10, 2024
Abstract
BACKGROUND AND OBJECTIVES: Reliable detection of white matter hyperintensities (WMH) is crucial for studying the impact of diffuse white-matter pathology on brain health and monitoring changes in WMH load over time. However, manual annotation of 3D high-dimensional neuroimages is laborious and can be prone to biases and errors in the annotation procedure. In this study, we evaluate the performance of deep learning (DL) segmentation tools and propose a novel volumetric segmentation model incorporating self-attention via a transformer-based architecture. Ultimately, we aim to evaluate diverse factors that influence WMH segmentation, aiming for a comprehensive analysis of the state-of-the-art algorithms in a broader context.