Leukocyte differential based on an imaging and impedance flow cytometry of microfluidics coupled with deep neural networks.

Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology
PMID:

Abstract

The differential of leukocytes functions as the first indicator in clinical examinations. However, microscopic examinations suffered from key limitations of low throughputs in classifying leukocytes while commercially available hematology analyzers failed to provide quantitative accuracies in leukocyte differentials. A home-developed imaging and impedance flow cytometry of microfluidics was used to capture fluorescent images and impedance variations of single cells traveling through constrictional microchannels. Convolutional and recurrent neural networks were adopted for data processing and feature extractions, which were then fused by a support vector machine to realize the four-part differential of leukocytes. The classification accuracies of the four-part leukocyte differential were quantified as 95.4% based on fluorescent images plus the convolutional neural network, 90.3% based on impedance variations plus the recurrent neural network, and 99.3% on the basis of fluorescent images, impedance variations, and deep neural networks. Based on single-cell fluorescent imaging and impedance variations coupled with deep neural networks, the four-part leukocyte differential can be realized with almost 100% accuracy.

Authors

  • Xiao Chen
  • Xukun Huang
    State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.
  • Jie Zhang
    College of Physical Education and Health, Linyi University, Linyi, Shandong, China.
  • Minruihong Wang
    State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.
  • Deyong Chen
    State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.
  • Yueying Li
    College of Information Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China.
  • Xuzhen Qin
    Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
  • Junbo Wang
    State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.
  • Jian Chen
    School of Pharmacy, Shanghai Jiaotong University, Shanghai, China.