Feature Selection Based on Iterative Canonical Correlation Analysis for Automatic Diagnosis of Parkinson's Disease.

Journal: Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
Published Date:

Abstract

Parkinson's disease (PD) is a major progressive neurodegenerative disorder. Accurate diagnosis of PD is crucial to control the symptoms appropriately. However, its clinical diagnosis mostly relies on the subjective judgment of physicians and the clinical symptoms that often appear late. Recent neuroimaging techniques, along with machine learning methods, provide alternative solutions for PD screening. In this paper, we propose a novel feature selection technique, based on iterative canonical correlation analysis (ICCA), to investigate the roles of different brain regions in PD through T1-weighted MR images. First of all, and tissue volumes in brain regions of interest are extracted as two feature vectors. Then, a small group of significant features were selected using the iterative structure of our proposed ICCA framework from both feature vectors. Finally, the selected features are used to build a robust classifier for automatic diagnosis of PD. Experimental results show that the proposed feature selection method results in better diagnosis accuracy, compared to the baseline and state-of-the-art methods.

Authors

  • Luyan Liu
    School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
  • Qian Wang
    Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China.
  • Ehsan Adeli
    Stanford University, Stanford CA 94305, USA.
  • Lichi Zhang
    School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
  • Han Zhang
    Johns Hopkins University, Baltimore, MD, USA.
  • Dinggang Shen
    School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.