Automatic generation of conclusions from neuroradiology MRI reports through natural language processing.
Journal:
Neuroradiology
Published Date:
Feb 21, 2024
Abstract
PURPOSE: The conclusion section of a radiology report is crucial for summarizing the primary radiological findings in natural language and essential for communicating results to clinicians. However, creating these summaries is time-consuming, repetitive, and prone to variability and errors among different radiologists. To address these issues, we evaluated a fine-tuned Text-To-Text Transfer Transformer (T5) model for abstractive summarization to automatically generate conclusions for neuroradiology MRI reports in a low-resource language.