Skin-Inspired Multi-Modal Mechanoreceptors for Dynamic Haptic Exploration.

Journal: Advanced materials (Deerfield Beach, Fla.)
PMID:

Abstract

Active sensing is a fundamental aspect of human and animal interactions with the environment, providing essential information about the hardness, texture, and tackiness of objects. This ability stems from the presence of diverse mechanoreceptors in the skin, capable of detecting a wide range of stimuli and from the sensorimotor control of biological mechanisms. In contrast, existing tactile sensors for robotic applications typically excel in identifying only limited types of information, lacking the versatility of biological mechanoreceptors and the requisite sensing strategies to extract tactile information proactively. Here, inspired by human haptic perception, a skin-inspired artificial 3D mechanoreceptor (SENS) capable of detecting multiple mechanical stimuli is developed to bridge sensing and action in a closed-loop sensorimotor system for dynamic haptic exploration. A tensor-based non-linear theoretical model is established to characterize the 3D deformation (e.g., tensile, compressive, and shear deformation) of SENS, providing guidance for the design and optimization of multimode sensing properties with high fidelity. Based on SENS, a closed-loop robotic system capable of recognizing objects with improved accuracy (≈96%) is further demonstrated. This dynamic haptic exploration approach shows promise for a wide range of applications such as autonomous learning, healthcare, and space and deep-sea exploration.

Authors

  • Jiangtao Su
    School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China.
  • Hang Zhang
    Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Haicheng Li
    Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Ke He
    Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Jiaqi Tu
    Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Feilong Zhang
    Beijing University of Chinese Medicine, Beijing 100029, China.
  • Zhihua Liu
    Department of Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China.
  • Zhisheng Lv
    Institute of Materials Research and Engineering, the Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.
  • Zequn Cui
    Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Yanzhen Li
    Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Jiaofu Li
    Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Leng Ze Tang
    Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Xiaodong Chen