An artificial intelligence algorithm for co-clustering to help in pharmacovigilance before and during the COVID-19 pandemic.

Journal: British journal of clinical pharmacology
Published Date:

Abstract

AIMS: Monitoring drug safety in real-world settings is the primary aim of pharmacovigilance. Frequent adverse drug reactions (ADRs) are usually identified during drug development. Rare ones are mostly characterized through post-marketing scrutiny, increasingly with the use of data mining and disproportionality approaches, which lead to new drug safety signals. Nonetheless, waves of excessive numbers of reports, often stirred up by social media, may overwhelm and distort this process, as observed recently with levothyroxine or COVID-19 vaccines. As human resources become rarer in the field of pharmacovigilance, we aimed to evaluate the performance of an unsupervised co-clustering method to help the monitoring of drug safety.

Authors

  • Alexandre Destere
    Département de Pharmacologie et de Pharmacovigilance, CHU de Nice, Université Côte d'Azur, France.
  • Giulia Marchello
    Université Côte d'Azur, Inria, CNRS, Laboratoire J.A. Dieudonné, Maasai team, Nice, France.
  • Diane Merino
    Département de Pharmacologie et de Pharmacovigilance, CHU de Nice, Université Côte d'Azur, France.
  • Nouha Ben Othman
    Department of Pharmacology and Pharmacovigilance Center, Université Côte d'Azur Medical Centre, Nice, France.
  • Alexandre O Gérard
    Département de Pharmacologie et de Pharmacovigilance, CHU de Nice, Université Côte d'Azur, France.
  • Thibaud Lavrut
    Department of Pharmacology and Pharmacovigilance Center, Université Côte d'Azur Medical Centre, Nice, France.
  • Delphine Viard
    Department of Pharmacology and Pharmacovigilance Center, Université Côte d'Azur Medical Centre, Nice, France.
  • Fanny Rocher
    Department of Pharmacology and Pharmacovigilance Center, Université Côte d'Azur Medical Centre, Nice, France.
  • Marco Corneli
    Université Côte d'Azur, Inria, Maison de la Modélisation des Simulations et des Interactions (MSI), MAASAI team, Nice, France.
  • Charles Bouveyron
    Université Côte d'Azur, Inria, CNRS, Laboratoire J.A. Dieudonné, Maasai team, Nice, France.
  • Milou-Daniel Drici
    Département de Pharmacologie et de Pharmacovigilance, CHU de Nice, Université Côte d'Azur, France.