An artificial intelligence algorithm for co-clustering to help in pharmacovigilance before and during the COVID-19 pandemic.
Journal:
British journal of clinical pharmacology
Published Date:
Feb 8, 2024
Abstract
AIMS: Monitoring drug safety in real-world settings is the primary aim of pharmacovigilance. Frequent adverse drug reactions (ADRs) are usually identified during drug development. Rare ones are mostly characterized through post-marketing scrutiny, increasingly with the use of data mining and disproportionality approaches, which lead to new drug safety signals. Nonetheless, waves of excessive numbers of reports, often stirred up by social media, may overwhelm and distort this process, as observed recently with levothyroxine or COVID-19 vaccines. As human resources become rarer in the field of pharmacovigilance, we aimed to evaluate the performance of an unsupervised co-clustering method to help the monitoring of drug safety.