An Explainable and Personalized Cognitive Reasoning Model Based on Knowledge Graph: Toward Decision Making for General Practice.

Journal: IEEE journal of biomedical and health informatics
PMID:

Abstract

General practice plays a prominent role in primary health care (PHC). However, evidence has shown that the quality of PHC is still unsatisfactory, and the accuracy of clinical diagnosis and treatment must be improved in China. Decision making tools based on artificial intelligence can help general practitioners diagnose diseases, but most existing research is not sufficiently scalable and explainable. An explainable and personalized cognitive reasoning model based on knowledge graph (CRKG) proposed in this article can provide personalized diagnosis, perform decision making in general practice, and simulate the mode of thinking of human beings utilizing patients' electronic health records (EHRs) and knowledge graph. Taking abdominal diseases as the application point, an abdominal disease knowledge graph is first constructed in a semiautomated manner. Then, the CRKG designed referring to dual process theory in cognitive science involves the update strategy of global graph representations and reasoning on a personal cognitive graph by adopting the idea of graph neural networks and attention mechanisms. For the diagnosis of diseases in general practice, the CRKG outperforms all the baselines with a precision@1 of 0.7873, recall@10 of 0.9020 and hits@10 of 0.9340. Additionally, the visualization of the reasoning process for each visit of a patient based on the knowledge graph enhances clinicians' comprehension and contributes to explainability. This study is of great importance for the exploration and application of decision making based on EHRs and knowledge graph.

Authors

  • Qianghua Liu
  • Yu Tian
    Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China.
  • Tianshu Zhou
    Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou Zhejiang Province, China.
  • Kewei Lyu
  • Zhixiao Wang
  • Yixiao Zheng
    Danone Open Science Research Center, Shanghai, China.
  • Ying Liu
    The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
  • Jingjing Ren
  • Jingsong Li
    Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.