[Fully Automatic Glioma Segmentation Algorithm of Magnetic Resonance Imaging Based on 3D-UNet With More Global Contextual Feature Extraction: An Improvement on Insufficient Extraction of Global Features].
Journal:
Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition
Published Date:
Mar 20, 2024
Abstract
OBJECTIVE: The fully automatic segmentation of glioma and its subregions is fundamental for computer-aided clinical diagnosis of tumors. In the segmentation process of brain magnetic resonance imaging (MRI), convolutional neural networks with small convolutional kernels can only capture local features and are ineffective at integrating global features, which narrows the receptive field and leads to insufficient segmentation accuracy. This study aims to use dilated convolution to address the problem of inadequate global feature extraction in 3D-UNet.