Design and Control of the Magnetically Actuated Micro/Nanorobot Swarm toward Biomedical Applications.

Journal: Advanced healthcare materials
PMID:

Abstract

Recently, magnetically actuated micro/nanorobots hold extensive promises in biomedical applications due to their advantages of noninvasiveness, fuel-free operation, and programmable nature. While effectively promised in various fields such as targeted delivery, most past investigations are mainly displayed in magnetic control of individual micro/nanorobots. Facing practical medical use, the micro/nanorobots are required for the development of swarm control in a closed-loop control manner. This review outlines the recent developments in magnetic micro/nanorobot swarms, including their actuating fundamentals, designs, controls, and biomedical applications. The fundamental principles and interactions involved in the formation of magnetic micro/nanorobot swarms are discussed first. The recent advances in the design of artificial and biohybrid micro/nanorobot swarms, along with the control devices and methods used for swarm manipulation, are presented. Furthermore, biomedical applications that have the potential to achieve clinical application are introduced, such as imaging-guided therapy, targeted delivery, embolization, and biofilm eradication. By addressing the potential challenges discussed toward the end of this review, magnetic micro/nanorobot swarms hold promise for clinical treatments in the future.

Authors

  • Lu Lu
    China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
  • Hongqiao Zhao
    School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
  • Yucong Lu
    School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
  • Yuxuan Zhang
    School of Electrical Engineering, Yanshan University, 438 Hebei Avenue, Qinhuangdao 066004, China. Electronic address: 1535937433@qq.com.
  • Xinran Wang
    Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
  • Chengjuan Fan
    The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
  • Zesheng Li
    Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China.
  • Zhiguang Wu
    Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China. zhiguangwu@hit.edu.cn qianghe@hit.edu.cn.