Deep Learning-based Image Enhancement Techniques for Fast MRI in Neuroimaging.

Journal: Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
PMID:

Abstract

Despite its superior soft tissue contrast and non-invasive nature, MRI requires long scan times due to its intrinsic signal acquisition principles, a main drawback which technological advancements in MRI have been focused on. In particular, scan time reduction is a natural requirement in neuroimaging due to detailed structures requiring high resolution imaging and often volumetric (3D) acquisitions, and numerous studies have recently attempted to harness deep learning (DL) technology in enabling scan time reduction and image quality improvement. Various DL-based image reconstruction products allow for additional scan time reduction on top of existing accelerated acquisition methods without compromising the image quality.

Authors

  • Roh-Eul Yoo
    Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
  • Seung Hong Choi
    From the Graduate School of Medical Science and Engineering (K.H.K., S.H.P.) and Department of Bio and Brain Engineering (S.H.P.), Korea Advanced Institute of Science and Technology, Room 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.C.); Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea (S.H.C.).