Super-resolution Deep Learning Reconstruction Cervical Spine 1.5T MRI: Improved Interobserver Agreement in Evaluations of Neuroforaminal Stenosis Compared to Conventional Deep Learning Reconstruction.

Journal: Journal of imaging informatics in medicine
Published Date:

Abstract

The aim of this study was to investigate whether super-resolution deep learning reconstruction (SR-DLR) is superior to conventional deep learning reconstruction (DLR) with respect to interobserver agreement in the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI. This retrospective study included 39 patients who underwent 1.5T cervical spine MRI. T2-weighted sagittal images were reconstructed with SR-DLR and DLR. Three blinded radiologists independently evaluated the images in terms of the degree of neuroforaminal stenosis, depictions of the vertebrae, spinal cord and neural foramina, sharpness, noise, artefacts and diagnostic acceptability. In quantitative image analyses, a fourth radiologist evaluated the signal-to-noise ratio (SNR) by placing a circular or ovoid region of interest on the spinal cord, and the edge slope based on a linear region of interest placed across the surface of the spinal cord. Interobserver agreement in the evaluations of neuroforaminal stenosis using SR-DLR and DLR was 0.422-0.571 and 0.410-0.542, respectively. The kappa values between reader 1 vs. reader 2 and reader 2 vs. reader 3 significantly differed. Two of the three readers rated depictions of the spinal cord, sharpness, and diagnostic acceptability as significantly better with SR-DLR than with DLR. Both SNR and edge slope (/mm) were also significantly better with SR-DLR (12.9 and 6031, respectively) than with DLR (11.5 and 3741, respectively) (p < 0.001 for both). In conclusion, compared to DLR, SR-DLR improved interobserver agreement in the evaluations of neuroforaminal stenosis using 1.5T cervical spine MRI.

Authors

  • Koichiro Yasaka
    From the Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 113-8655.
  • Shunichi Uehara
    Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
  • Shimpei Kato
    Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Yusuke Watanabe
    From the Departments of Diagnostic and Interventional Radiology (D.U., A.Y., S.L.W., H. Tatekawa, H. Takita, T.H., A.S., Y.M.), Neurosurgery (T. Ichinose, H.A., Y.W., T.G.), and Medical Statistics (D.K.), Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; and Department of Radiology, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan (Y.K., T. Ichida).
  • Taku Tajima
    Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo 108-8329, Japan; Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan.
  • Hiroyuki Akai
    From the Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 113-8655.
  • Naoki Yoshioka
    Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan.
  • Masaaki Akahane
    Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan.
  • Kuni Ohtomo
  • Osamu Abe
    From the Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 113-8655.
  • Shigeru Kiryu
    From the Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 113-8655.