Multitask Adversarial Networks Based on Extensive Nonlinear Spiking Neuron Models.

Journal: International journal of neural systems
Published Date:

Abstract

Deep learning technology has been successfully used in Chest X-ray (CXR) images of COVID-19 patients. However, due to the characteristics of COVID-19 pneumonia and X-ray imaging, the deep learning methods still face many challenges, such as lower imaging quality, fewer training samples, complex radiological features and irregular shapes. To address these challenges, this study first introduces an extensive NSNP-like neuron model, and then proposes a multitask adversarial network architecture based on ENSNP-like neurons for chest X-ray images of COVID-19, called MAE-Net. The MAE-Net serves two tasks: (i) converting low-quality CXR images to high-quality images; (ii) classifying CXR images of COVID-19. The adversarial architecture of MAE-Net uses two generators and two discriminators, and two new loss functions have been introduced to guide the optimization of the network. The MAE-Net is tested on four benchmark COVID-19 CXR image datasets and compared them with eight deep learning models. The experimental results show that the proposed MAE-Net can enhance the conversion quality and the accuracy of image classification results.

Authors

  • Jun Fu
    Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
  • Hong Peng
    1 Center for Radio Administration and Technology Development, School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China.
  • Bing Li
  • Zhicai Liu
    School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China.
  • Rikong Lugu
    School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China.
  • Jun Wang
    Department of Speech, Language, and Hearing Sciences and the Department of Neurology, The University of Texas at Austin, Austin, TX 78712, USA.
  • Antonio Ramírez-De-Arellano
    Research Group of Natural Computing, Department of Computer Science and Artificial Intelligence, University of Seville, Sevilla 41012, Spain.