Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models.

Journal: Radiology
Published Date:

Abstract

Background Preoperative discrimination of preinvasive, minimally invasive, and invasive adenocarcinoma at CT informs clinical management decisions but may be challenging for classifying pure ground-glass nodules (pGGNs). Deep learning (DL) may improve ternary classification. Purpose To determine whether a strategy that includes an adjudication approach can enhance the performance of DL ternary classification models in predicting the invasiveness of adenocarcinoma at chest CT and maintain performance in classifying pGGNs. Materials and Methods In this retrospective study, six ternary models for classifying preinvasive, minimally invasive, and invasive adenocarcinoma were developed using a multicenter data set of lung nodules. The DL-based models were progressively modified through framework optimization, joint learning, and an adjudication strategy (simulating a multireader approach to resolving discordant nodule classifications), integrating two binary classification models with a ternary classification model to resolve discordant classifications sequentially. The six ternary models were then tested on an external data set of pGGNs imaged between December 2019 and January 2021. Diagnostic performance including accuracy, specificity, and sensitivity was assessed. The χ test was used to compare model performance in different subgroups stratified by clinical confounders. Results A total of 4929 nodules from 4483 patients (mean age, 50.1 years ± 9.5 [SD]; 2806 female) were divided into training ( = 3384), validation ( = 579), and internal ( = 966) test sets. A total of 361 pGGNs from 281 patients (mean age, 55.2 years ± 11.1 [SD]; 186 female) formed the external test set. The proposed strategy improved DL model performance in external testing ( < .001). For classifying minimally invasive adenocarcinoma, the accuracy was 85% and 79%, sensitivity was 75% and 63%, and specificity was 89% and 85% for the model with adjudication (model 6) and the model without (model 3), respectively. Model 6 showed a relatively narrow range (maximum minus minimum) across diagnostic indexes (accuracy, 1.7%; sensitivity, 7.3%; specificity, 0.9%) compared with the other models (accuracy, 0.6%-10.8%; sensitivity, 14%-39.1%; specificity, 5.5%-17.9%). Conclusion Combining framework optimization, joint learning, and an adjudication approach improved DL classification of adenocarcinoma invasiveness at chest CT. Published under a CC BY 4.0 license. . See also the editorial by Sohn and Fields in this issue.

Authors

  • Zhengsong Pan
    From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.).
  • Ge Hu
    Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
  • Zhenchen Zhu
    From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.).
  • Weixiong Tan
    Beijing Infervision Technology Co. Ltd., Beijing, 100025, China.
  • Wei Han
    Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Collaborative Innovation Center of Hebei Province for Mechanism, Diagnosis and Treatment of Neuropsychiatric Diseases, Hebei Medical University, Shijiazhuang, Hebei, China.
  • Zhen Zhou
    Deepwise Healthcare, Beijing 100080, China.
  • Wei Song
    School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, Jiangsu, China.
  • Yizhou Yu
    Department of Computer Science, The University of Hong Kong, Pok Fu Lam, Hong Kong.
  • Lan Song
    Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
  • Zhengyu Jin
    Departments of Radiology, Peking Union Medical College Hospital, Beijing.