Prediction of adverse cardiovascular events in children using artificial intelligence-based electrocardiogram.
Journal:
International journal of cardiology
PMID:
38579941
Abstract
BACKGROUND: Convolutional neural networks (CNNs) have emerged as a novel method for evaluating heart failure (HF) in adult electrocardiograms (ECGs). However, such CNNs are not applicable to pediatric HF, where abnormal anatomy of congenital heart defects plays an important role. ECG-based CNNs reflecting neurohormonal activation (NHA) may be a useful marker of pediatric HF. This study aimed to develop and validate an ECG-derived marker of pediatric HF that reflects the risk of future cardiovascular events.