Multiplex Detection of Foodborne Pathogens using 3D Nanostructure Swab and Deep Learning-Based Classification of Raman Spectra.

Journal: Small (Weinheim an der Bergstrasse, Germany)
PMID:

Abstract

Proactive management of foodborne illness requires routine surveillance of foodborne pathogens, which requires developing simple, rapid, and sensitive detection methods. Here, a strategy is presented that enables the detection of multiple foodborne bacteria using a 3D nanostructure swab and deep learning-based Raman signal classification. The nanostructure swab efficiently captures foodborne pathogens, and the portable Raman instrument directly collects the Raman signals of captured bacteria. a deep learning algorithm has been demonstrated, 1D convolutional neural network with binary labeling, achieves superior performance in classifying individual bacterial species. This methodology has been extended to mixed bacterial populations, maintaining accuracy close to 100%. In addition, the gradient-weighted class activation mapping method is used to provide an investigation of the Raman bands for foodborne pathogens. For practical application, blind tests are conducted on contaminated kitchen utensils and foods. The proposed technique is validated by the successful detection of bacterial species from the contaminated surfaces. The use of a 3D nanostructure swab, portable Raman device, and deep learning-based classification provides a powerful tool for rapid identification (≈5 min) of foodborne bacterial species. The detection strategy shows significant potential for reliable food safety monitoring, making a meaningful contribution to public health and the food industry.

Authors

  • Hyunju Kang
    Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Junhyeong Lee
    Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
  • Jeong Moon
    Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Taegu Lee
    Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
  • Jueun Kim
    Department of Energy Resources and Chemical Engineering, Kangwon National University, 346 Jungang-ro, Samcheok, Gangwon-do, 25913, Republic of Korea.
  • Yeonwoo Jeong
    Department of Physical Therapy, Jeonju University, Jeonju 55069, Republic of Korea.
  • Eun-Kyung Lim
    Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Juyeon Jung
    Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Yongwon Jung
    Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Seok Jae Lee
    Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Kyoung G Lee
    Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Seunghwa Ryu
    Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
  • Taejoon Kang
    Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.