Integrating mid-infrared spectroscopy, machine learning, and graphical bias correction for fatty acid prediction in water buffalo milk.
Journal:
Journal of the science of food and agriculture
PMID:
38501395
Abstract
BACKGROUND: Buffalo milk, constituting 15% of global production, has higher fatty acids content than Holstein milk. Fourier-transform mid-infrared (FT-MIR) spectroscopy is widely used for dairy analysis, but its application to buffalo milk, with larger fat globules, remains understudied. The ultimate goal of this study is to develop machine learning models based on FT-MIR spectroscopy for predicting fatty acids in buffalo milk and to assess the accuracy of commercial milk analyzers. This research provides a convenient, fast, and environmentally friendly method for detecting the fatty acid composition in buffalo milk.