Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment.
Journal:
BMC public health
Published Date:
May 23, 2024
Abstract
BACKGROUND: Identifying patients at increased risk of loss to follow-up (LTFU) is key to developing strategies to optimize the clinical management of tuberculosis (TB). The use of national registry data in prediction models may be a useful tool to inform healthcare workers about risk of LTFU. Here we developed a score to predict the risk of LTFU during anti-TB treatment (ATT) in a nationwide cohort of cases using clinical data reported to the Brazilian Notifiable Disease Information System (SINAN).