Enhancing the coverage of SemRep using a relation classification approach.
Journal:
Journal of biomedical informatics
Published Date:
Jul 1, 2024
Abstract
OBJECTIVE: Relation extraction is an essential task in the field of biomedical literature mining and offers significant benefits for various downstream applications, including database curation, drug repurposing, and literature-based discovery. The broad-coverage natural language processing (NLP) tool SemRep has established a solid baseline for extracting subject-predicate-object triples from biomedical text and has served as the backbone of the Semantic MEDLINE Database (SemMedDB), a PubMed-scale repository of semantic triples. While SemRep achieves reasonable precision (0.69), its recall is relatively low (0.42). In this study, we aimed to enhance SemRep using a relation classification approach, in order to eventually increase the size and the utility of SemMedDB.