A Machine Learning Model to Predict the Histology of Retroperitoneal Lymph Node Dissection Specimens.
Journal:
Anticancer research
PMID:
38677742
Abstract
BACKGROUND/AIM: While post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) benefits patients with teratoma or viable germ cell tumors (GCT), it becomes overtreatment if necrosis is detected in PC-RPLND specimens. Serum microRNA-371a-3p correctly predicts residual viable GCT with 100% sensitivity; however, prediction of residual teratoma in PC-RPLND specimens using current modalities remains difficult. Therefore, we developed a machine learning model using CT imaging and clinical variables to predict the presence of residual teratoma in PC-RPLND specimens.