EEG-based machine learning models for the prediction of phenoconversion time and subtype in isolated rapid eye movement sleep behavior disorder.
Journal:
Sleep
PMID:
38330231
Abstract
STUDY OBJECTIVES: Isolated rapid eye movement sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies and eventually phenoconverts to overt neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Associations of baseline resting-state electroencephalography (EEG) with phenoconversion have been reported. In this study, we aimed to develop machine learning models to predict phenoconversion time and subtype using baseline EEG features in patients with iRBD.