Artificial intelligence in radiotherapy: Current applications and future trends.

Journal: Diagnostic and interventional imaging
Published Date:

Abstract

Radiation therapy has dramatically changed with the advent of computed tomography and intensity modulation. This added complexity to the workflow but allowed for more precise and reproducible treatment. As a result, these advances required the accurate delineation of many more volumes, raising questions about how to delineate them, in a uniform manner across centers. Then, as computing power improved, reverse planning became possible and three-dimensional dose distributions could be generated. Artificial intelligence offers the opportunity to make such workflow more efficient while increasing practice homogeneity. Many artificial intelligence-based tools are being implemented in routine practice to increase efficiency, reduce workload and improve homogeneity of treatments. Data retrieved from this workflow could be combined with clinical data and omic data to develop predictive tools to support clinical decision-making process. Such predictive tools are at the stage of proof-of-concept and need to be explainatory, prospectively validated, and based on large and multicenter cohorts. Nevertheless, they could bridge the gap to personalized radiation oncology, by personalizing oncologic strategies, dose prescriptions to tumor volumes and dose constraints to organs at risk.

Authors

  • Paul Giraud
    INSERM UMR 1138, Centre de Recherche des Cordeliers, Paris, 75006, France.
  • Jean-Emmanuel Bibault
    Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris Descartes University, Paris Sorbonne Cité, Paris, France; INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Paris Descartes University, Sorbonne Paris Cité, Paris, France. Electronic address: jean-emmanuel.bibault@aphp.fr.