Super-resolution deep-learning reconstruction for cardiac CT: impact of radiation dose and focal spot size on task-based image quality.

Journal: Physical and engineering sciences in medicine
Published Date:

Abstract

This study aimed to evaluate the impact of radiation dose and focal spot size on the image quality of super-resolution deep-learning reconstruction (SR-DLR) in comparison with iterative reconstruction (IR) and normal-resolution DLR (NR-DLR) algorithms for cardiac CT. Catphan-700 phantom was scanned on a 320-row scanner at six radiation doses (small and large focal spots at 1.4-4.3 and 5.8-8.8 mGy, respectively). Images were reconstructed using hybrid-IR, model-based-IR, NR-DLR, and SR-DLR algorithms. Noise properties were evaluated through plotting noise power spectrum (NPS). Spatial resolution was quantified with task-based transfer function (TTF); Polystyrene, Delrin, and Bone-50% inserts were used for low-, intermediate, and high-contrast spatial resolution. The detectability index (d') was calculated. Image noise, noise texture, edge sharpness of low- and intermediate-contrast objects, delineation of fine high-contrast objects, and overall quality of four reconstructions were visually ranked. Results indicated that among four reconstructions, SR-DLR yielded the lowest noise magnitude and NPS peak, as well as the highest average NPS frequency, TTF, d' values, and visual rank at each radiation dose. For all reconstructions, the intermediate- to high-contrast spatial resolution was maximized at 4.3 mGy, while the lowest noise magnitude and highest d' were attained at 8.8 mGy. SR-DLR at 4.3 mGy exhibited superior noise performance, intermediate- to high-contrast spatial resolution, d' values, and visual rank compared to the other reconstructions at 8.8 mGy. Therefore, SR-DLR may yield superior diagnostic image quality and facilitate radiation dose reduction compared to the other reconstructions, particularly when combined with small focal spot scanning.

Authors

  • Takafumi Emoto
    From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.).
  • Yasunori Nagayama
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan (T.N., N.Y., N.K., Y.N., H.U., M.K., S.O., T.H.).
  • Sentaro Takada
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
  • Daisuke Sakabe
    From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.).
  • Shinsuke Shigematsu
    Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan.
  • Makoto Goto
    From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.).
  • Kengo Nakato
    Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
  • Ryuya Yoshida
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
  • Ryota Harai
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
  • Masafumi Kidoh
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan (T.N., N.Y., N.K., Y.N., H.U., M.K., S.O., T.H.).
  • Seitaro Oda
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan (T.N., N.Y., N.K., Y.N., H.U., M.K., S.O., T.H.).
  • Takeshi Nakaura
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan (T.N., N.Y., N.K., Y.N., H.U., M.K., S.O., T.H.). Electronic address: kff00712@nifty.com.
  • Toshinori Hirai
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan (T.N., N.Y., N.K., Y.N., H.U., M.K., S.O., T.H.).