MUMAL2: Improving sensitivity in shotgun proteomics using cost sensitive artificial neural networks and a threshold selector algorithm.
Journal:
BMC bioinformatics
Published Date:
Dec 15, 2016
Abstract
BACKGROUND: This work presents a machine learning strategy to increase sensitivity in tandem mass spectrometry (MS/MS) data analysis for peptide/protein identification. MS/MS yields thousands of spectra in a single run which are then interpreted by software. Most of these computer programs use a protein database to match peptide sequences to the observed spectra. The peptide-spectrum matches (PSMs) must also be assessed by computational tools since manual evaluation is not practicable. The target-decoy database strategy is largely used for error estimation in PSM assessment. However, in general, that strategy does not account for sensitivity.