Artificial intelligence approaches for phenotyping heart failure in U.S. Veterans Health Administration electronic health record.
Journal:
ESC heart failure
PMID:
38873749
Abstract
AIMS: Heart failure (HF) is a clinical syndrome with no definitive diagnostic tests. HF registries are often based on manual reviews of medical records of hospitalized HF patients identified using International Classification of Diseases (ICD) codes. However, most HF patients are not hospitalized, and manual review of big electronic health record (EHR) data is not practical. The US Department of Veterans Affairs (VA) has the largest integrated healthcare system in the nation, and an estimated 1.5 million patients have ICD codes for HF (HF ICD-code universe) in their VA EHR. The objective of our study was to develop artificial intelligence (AI) models to phenotype HF in these patients.