Deep Left Ventricular Motion Estimation Methods in Echocardiography: A Comparative Study.
Journal:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
PMID:
40039784
Abstract
Motion estimation in echocardiography is critical when assessing heart function and calculating myocardial deformation indices. Nevertheless, there are limitations in clinical practice, particularly with regard to the accuracy and reliability of measurements retrieved from images. In this study, deep learning-based motion estimation architectures were used to determine the left ventricular longitudinal strain in echocardiography. Three motion estimation approaches, pretrained on popular optical flow datasets, were applied to a simulated echocardiographic dataset. Results show that PWC-Net, RAFT and FlowFormer achieved an average end point error of 0.20, 0.11 and 0.09 mm per frame, respectively. Additionally, global longitudinal strain was calculated from the FlowFormer outputs to assess strain correlation. Notably, there is variability in strain accuracy among different vendors. Thus, optical flow-based motion estimation has the potential to facilitate the use of strain imaging in clinical practice.