Predicting adverse birth outcome among childbearing women in Sub-Saharan Africa: employing innovative machine learning techniques.
Journal:
BMC public health
PMID:
39075434
Abstract
BACKGROUND: Adverse birth outcomes, including preterm birth, low birth weight, and stillbirth, remain a major global health challenge, particularly in developing regions. Understanding the possible risk factors is crucial for designing effective interventions for birth outcomes. Accordingly, this study aimed to develop a predictive model for adverse birth outcomes among childbearing women in Sub-Saharan Africa using advanced machine learning techniques. Additionally, this study aimed to employ a novel data science interpretability techniques to identify the key risk factors and quantify the impact of each feature on the model prediction.