AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Models, Molecular

Showing 71 to 80 of 628 articles

Clear Filters

Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence.

Molecules (Basel, Switzerland)
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computati...

Exploring the potential of structure-based deep learning approaches for T cell receptor design.

PLoS computational biology
Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optim...

Deciphering Molecular Embeddings with Centered Kernel Alignment.

Journal of chemical information and modeling
Analyzing machine learning models, especially nonlinear ones, poses significant challenges. In this context, centered kernel alignment (CKA) has emerged as a promising model analysis tool that assesses the similarity between two embeddings. CKA's eff...

Data and Molecular Fingerprint-Driven Machine Learning Approaches to Halogen Bonding.

Journal of chemical information and modeling
The ability to predict the strength of halogen bonds and properties of halogen bond (XB) donors has significant utility for medicinal chemistry and materials science. XBs are typically calculated through expensive ab initio methods. Thus, the develop...

Using deep-learning predictions reveals a large number of register errors in PDB depositions.

IUCrJ
The accuracy of the information in the Protein Data Bank (PDB) is of great importance for the myriad downstream applications that make use of protein structural information. Despite best efforts, the occasional introduction of errors is inevitable, e...

ANTIPASTI: Interpretable prediction of antibody binding affinity exploiting normal modes and deep learning.

Structure (London, England : 1993)
The high binding affinity of antibodies toward their cognate targets is key to eliciting effective immune responses, as well as to the use of antibodies as research and therapeutic tools. Here, we propose ANTIPASTI, a convolutional neural network mod...

QSPR modeling to predict surface tension of psychoanaleptic drugs using the hybrid DA-SVR algorithm.

Journal of molecular graphics & modelling
A robust Quantitative Structure-Property Relationship (QSPR) model was presented to predict the surface tension property of psychoanaleptic (psychostimulant and antidepressant) drugs. A dataset of 112 molecules was utilized, and three feature selecti...

Self-Supervised Molecular Representation Learning With Topology and Geometry.

IEEE journal of biomedical and health informatics
Molecular representation learning is of great importance for drug molecular analysis. The development in molecular representation learning has demonstrated great promise through self-supervised pre-training strategy to overcome the scarcity of labele...

Generative Modeling of RNA Sequence Families with Restricted Boltzmann Machines.

Methods in molecular biology (Clifton, N.J.)
In this chapter, we discuss the potential application of Restricted Boltzmann machines (RBM) to model sequence families of structured RNA molecules. RBMs are a simple two-layer machine learning model able to capture intricate sequence dependencies in...

AI Prediction of Structural Stability of Nanoproteins Based on Structures and Residue Properties by Mean Pooled Dual Graph Convolutional Network.

Interdisciplinary sciences, computational life sciences
The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, whi...