AIMC Topic: Models, Molecular

Clear Filters Showing 71 to 80 of 657 articles

GeoNet enables the accurate prediction of protein-ligand binding sites through interpretable geometric deep learning.

Structure (London, England : 1993)
The identification of protein binding residues is essential for understanding their functions in vivo. However, it remains a computational challenge to accurately identify binding sites due to the lack of known residue binding patterns. Local residue...

Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites.

Journal of chemical information and modeling
In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. Traditionally, methods like X-ray crystallogra...

Using deep-learning predictions reveals a large number of register errors in PDB depositions.

IUCrJ
The accuracy of the information in the Protein Data Bank (PDB) is of great importance for the myriad downstream applications that make use of protein structural information. Despite best efforts, the occasional introduction of errors is inevitable, e...

Data and Molecular Fingerprint-Driven Machine Learning Approaches to Halogen Bonding.

Journal of chemical information and modeling
The ability to predict the strength of halogen bonds and properties of halogen bond (XB) donors has significant utility for medicinal chemistry and materials science. XBs are typically calculated through expensive ab initio methods. Thus, the develop...

ANTIPASTI: Interpretable prediction of antibody binding affinity exploiting normal modes and deep learning.

Structure (London, England : 1993)
The high binding affinity of antibodies toward their cognate targets is key to eliciting effective immune responses, as well as to the use of antibodies as research and therapeutic tools. Here, we propose ANTIPASTI, a convolutional neural network mod...

QSPR modeling to predict surface tension of psychoanaleptic drugs using the hybrid DA-SVR algorithm.

Journal of molecular graphics & modelling
A robust Quantitative Structure-Property Relationship (QSPR) model was presented to predict the surface tension property of psychoanaleptic (psychostimulant and antidepressant) drugs. A dataset of 112 molecules was utilized, and three feature selecti...

Geometry-Augmented Molecular Representation Learning for Property Prediction.

IEEE/ACM transactions on computational biology and bioinformatics
Accurate molecular representation plays a crucial role in expediting the process of drug discovery. Graph neural networks (GNNs) have demonstrated robust capabilities in molecular representation learning, adept at capturing structural and spatial inf...

AI Prediction of Structural Stability of Nanoproteins Based on Structures and Residue Properties by Mean Pooled Dual Graph Convolutional Network.

Interdisciplinary sciences, computational life sciences
The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, whi...

Exploring the potential of structure-based deep learning approaches for T cell receptor design.

PLoS computational biology
Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optim...

Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence.

Molecules (Basel, Switzerland)
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computati...