AIMC Topic: Protein Conformation

Clear Filters Showing 41 to 50 of 524 articles

Lessons from Deep Learning Structural Prediction of Multistate Multidomain Proteins-The Case Study of Coiled-Coil NOD-like Receptors.

International journal of molecular sciences
We test here the prediction capabilities of the new generation of deep learning predictors in the more challenging situation of multistate multidomain proteins by using as a case study a coiled-coil family of Nucleotide-binding Oligomerization Domain...

CovCysPredictor: Predicting Selective Covalently Modifiable Cysteines Using Protein Structure and Interpretable Machine Learning.

Journal of chemical information and modeling
Targeted covalent inhibition is a powerful therapeutic modality in the drug discoverer's toolbox. Recent advances in covalent drug discovery, in particular, targeting cysteines, have led to significant breakthroughs for traditionally challenging targ...

DPFunc: accurately predicting protein function via deep learning with domain-guided structure information.

Nature communications
Computational methods for predicting protein function are of great significance in understanding biological mechanisms and treating complex diseases. However, existing computational approaches of protein function prediction lack interpretability, mak...

Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm.

Journal of chemical information and modeling
In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad applicati...

Topology-based protein classification: A deep learning approach.

Biochemical and biophysical research communications
Utilizing Artificial Intelligence (AI) in computational biology techniques could offer significant advantages in alleviating the growing workloads faced by structural biologists, especially with the emergence of big data. In this study, we employed D...

Study on SHP2 Conformational Transition and Structural Characterization of Its High-Potency Allosteric Inhibitors by Molecular Dynamics Simulations Combined with Machine Learning.

Molecules (Basel, Switzerland)
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and im...

An integrated machine learning approach delineates an entropic expansion mechanism for the binding of a small molecule to α-synuclein.

eLife
The mis-folding and aggregation of intrinsically disordered proteins (IDPs) such as α-synuclein (αS) underlie the pathogenesis of various neurodegenerative disorders. However, targeting αS with small molecules faces challenges due to the lack of defi...

S-PLM: Structure-Aware Protein Language Model via Contrastive Learning Between Sequence and Structure.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Proteins play an essential role in various biological and engineering processes. Large protein language models (PLMs) present excellent potential to reshape protein research by accelerating the determination of protein functions and the design of pro...

Docking-Informed Machine Learning for Kinome-wide Affinity Prediction.

Journal of chemical information and modeling
Kinase inhibitors are an important class of anticancer drugs, with 80 inhibitors clinically approved and >100 in active clinical testing. Most bind competitively in the ATP-binding site, leading to challenges with selectivity for a specific kinase, r...

Prediction of Inter-Residue Multiple Distances and Exploration of Protein Multiple Conformations by Deep Learning.

IEEE/ACM transactions on computational biology and bioinformatics
AlphaFold2 has achieved a major breakthrough in end-to-end prediction for static protein structures. However, protein conformational change is considered to be a key factor in protein biological function. Inter-residue multiple distances prediction i...