AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Protein Conformation

Showing 41 to 50 of 495 articles

Clear Filters

Estimating protein-ligand interactions with geometric deep learning and mixture density models.

Journal of biosciences
Understanding the interactions between a ligand and its molecular target is crucial in guiding the optimization of molecules for any drug design workflow. Multiple experimental and computational methods have been developed to better understand these...

SurfDock is a surface-informed diffusion generative model for reliable and accurate protein-ligand complex prediction.

Nature methods
Accurately predicting protein-ligand interactions is crucial for understanding cellular processes. We introduce SurfDock, a deep-learning method that addresses this challenge by integrating protein sequence, three-dimensional structural graphs and su...

Correlating enzymatic reactivity for different substrates using transferable data-driven collective variables.

Proceedings of the National Academy of Sciences of the United States of America
Machine learning (ML) is transforming the investigation of complex biological processes. In enzymatic catalysis, one significant challenge is identifying the reactive conformations (RC) of the enzyme:substrate complex where the substrate assumes a pr...

ProAffinity-GNN: A Novel Approach to Structure-Based Protein-Protein Binding Affinity Prediction via a Curated Data Set and Graph Neural Networks.

Journal of chemical information and modeling
Protein-protein interactions (PPIs) are crucial for understanding biological processes and disease mechanisms, contributing significantly to advances in protein engineering and drug discovery. The accurate determination of binding affinities, essenti...

Emerging Frontiers in Conformational Exploration of Disordered Proteins: Integrating Autoencoder and Molecular Simulations.

ACS chemical neuroscience
Intrinsically disordered proteins (IDPs) are closely associated with a number of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Due to the highly dynamic nature of IDPs, their structural determination and conformatio...

An integrated machine learning approach delineates an entropic expansion mechanism for the binding of a small molecule to α-synuclein.

eLife
The mis-folding and aggregation of intrinsically disordered proteins (IDPs) such as α-synuclein (αS) underlie the pathogenesis of various neurodegenerative disorders. However, targeting αS with small molecules faces challenges due to the lack of defi...

Docking-Informed Machine Learning for Kinome-wide Affinity Prediction.

Journal of chemical information and modeling
Kinase inhibitors are an important class of anticancer drugs, with 80 inhibitors clinically approved and >100 in active clinical testing. Most bind competitively in the ATP-binding site, leading to challenges with selectivity for a specific kinase, r...

S-PLM: Structure-Aware Protein Language Model via Contrastive Learning Between Sequence and Structure.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Proteins play an essential role in various biological and engineering processes. Large protein language models (PLMs) present excellent potential to reshape protein research by accelerating the determination of protein functions and the design of pro...

Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction.

Methods in molecular biology (Clifton, N.J.)
Protein structure prediction is fundamental to molecular biology and has numerous applications in areas such as drug discovery and protein engineering. Machine learning techniques have greatly advanced protein 3D modeling in recent years, particularl...

Machine Learning Techniques to Infer Protein Structure and Function from Sequences: A Comprehensive Review.

Methods in molecular biology (Clifton, N.J.)
The elucidation of protein structure and function plays a pivotal role in understanding biological processes and facilitating drug discovery. With the exponential growth of protein sequence data, machine learning techniques have emerged as powerful t...