Low-contrast lesion detection in neck CT: a multireader study comparing deep learning, iterative, and filtered back projection reconstructions using realistic phantoms.

Journal: European radiology experimental
Published Date:

Abstract

BACKGROUND: Computed tomography (CT) reconstruction algorithms can improve image quality, especially deep learning reconstruction (DLR). We compared DLR, iterative reconstruction (IR), and filtered back projection (FBP) for lesion detection in neck CT.

Authors

  • Quirin Bellmann
    Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
  • Yang Peng
    Division of Computing and Software Systems, University of Washington Bothell, Bothell, WA 98011, USA.
  • Ulrich Genske
    Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
  • Li Yan
    Wenzhou Public Utilities Investment Group Co. Ltd., Wenzhou 325000, China. Electronic address: Vangji@126.com.
  • Moritz Wagner
    Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
  • Paul Jahnke
    Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. paul.jahnke@charite.de.