Weakly Supervised Deep Learning in Radiology.

Journal: Radiology
Published Date:

Abstract

Deep learning (DL) is currently the standard artificial intelligence tool for computer-based image analysis in radiology. Traditionally, DL models have been trained with strongly supervised learning methods. These methods depend on reference standard labels, typically applied manually by experts. In contrast, weakly supervised learning is more scalable. Weak supervision comprises situations in which only a portion of the data are labeled (incomplete supervision), labels refer to a whole region or case as opposed to a precisely delineated image region (inexact supervision), or labels contain errors (inaccurate supervision). In many applications, weak labels are sufficient to train useful models. Thus, weakly supervised learning can unlock a large amount of otherwise unusable data for training DL models. One example of this is using large language models to automatically extract weak labels from free-text radiology reports. Here, we outline the key concepts in weakly supervised learning and provide an overview of applications in radiologic image analysis. With more fundamental and clinical translational work, weakly supervised learning could facilitate the uptake of DL in radiology and research workflows by enabling large-scale image analysis and advancing the development of new DL-based biomarkers.

Authors

  • Leo Misera
    Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany.
  • Gustav Müller-Franzes
    From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., L.H., P.S., S.K., E.B., M.S.H., F.P., M.Z., C.K., P.B., S.N., D.T.), Department of Medicine III (J.K., K.H.), and Clinic for Surgical Intensive Medicine and Intermediate Care (G.M.), University Hospital Aachen, Pauwelsstrasse 30, 52064 Aachen, Germany; Physics of Molecular Imaging Systems, Experimental Molecular Imaging (T.H., V.S.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Department of Inner Medicine, Luisenhospital Aachen, Aachen, Germany (L.N.); and Ocumeda AG, Erlen, Switzerland (C.H.).
  • Daniel Truhn
    Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany (J.S., D.B.A., S.N.); Institute of Computer Vision and Imaging, RWTH University Aachen, Pauwelsstrasse 30, 52072 Aachen, Germany (J.S., D.M.); Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (D.T., M.P., F.M., C.K., S.N.); and Faculty of Mathematics and Natural Sciences, Institute of Informatics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (S.C.).
  • Jakob Nikolas Kather
    Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.