A microdiscectomy surgical video annotation framework for supervised machine learning applications.
Journal:
International journal of computer assisted radiology and surgery
PMID:
39028480
Abstract
PURPOSE: Lumbar discectomy is among the most common spine procedures in the US, with 300,000 procedures performed each year. Like other surgical procedures, this procedure is not excluded from potential complications. This paper presents a video annotation methodology for microdiscectomy including the development of a surgical workflow. In future work, this methodology could be combined with computer vision and machine learning models to predict potential adverse events. These systems would monitor the intraoperative activities and possibly anticipate the outcomes.