Pediatric cardiac surgery: machine learning models for postoperative complication prediction.

Journal: Journal of anesthesia
PMID:

Abstract

PURPOSE: Managing children undergoing cardiac surgery with cardiopulmonary bypass (CPB) presents a significant challenge for anesthesiologists. Machine Learning (ML)-assisted tools have the potential to enhance the recognition of patients at risk of complications and predict potential issues, ultimately improving outcomes.

Authors

  • Rémi Florquin
    Department of Anesthesiology, CHU Charleroi, Chaussée de Bruxelles 140, 6042, Lodelinsart, Belgium. remi.florquin@gmail.com.
  • Renaud Florquin
    Floconsult SPRL, 1480, Tubize, Belgium.
  • Denis Schmartz
    Department of Anesthesiology, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles, 1070, Brussels, Belgium.
  • Philippe Dony
    Department of Anesthesiology, CHU Charleroi, Chaussée de Bruxelles 140, 6042, Lodelinsart, Belgium.
  • Giovanni Briganti
    University of Mons, Mons, Belgium.