Machine learning to optimize literature screening in medical guideline development.
Journal:
Systematic reviews
PMID:
38992684
Abstract
OBJECTIVES: In a time of exponential growth of new evidence supporting clinical decision-making, combined with a labor-intensive process of selecting this evidence, methods are needed to speed up current processes to keep medical guidelines up-to-date. This study evaluated the performance and feasibility of active learning to support the selection of relevant publications within medical guideline development and to study the role of noisy labels.