Application of triple-branch artificial neural network system for catalytic pellets combustion.
Journal:
Journal of environmental management
PMID:
38986383
Abstract
On the international level, it is common to act on reducing emissions from energy systems. However, in addition to industrial emissions, low-stack emissions also make a significant contribution. A good step in reducing its environmental impact, is to move to biofuels, including biomass. This paper examines the impact of placing a catalytic system in a retort boiler to minimize emissions of greenhouse gases, dust and other pollutants when burning pellets. The effect of platinum, and oxides of selected metals placed on the deflector as a solid catalyst was studied. Based on the experimental data, a branched artificial neural network was constructed and trained. The routing of three parallel topologies made it possible to achieve high accuracy while keeping the input data relatively simple. The system showed an average error of 3.54% against arbitrary test data. On the basis of experimental data as well as predictions returned by the artificial neural network, recommendations were shown for the catalysts used and their amounts. Depending on the biomass from which the pellet was produced, the experiment suggested the use of titanium or copper oxides. In the case of the neural network, it was able to select a better system, based on platinum, improving emission reductions by up to more than 19%, depending on the type of pellet used.