Advancing Medical Imaging Research Through Standardization: The Path to Rapid Development, Rigorous Validation, and Robust Reproducibility.

Journal: Investigative radiology
Published Date:

Abstract

Artificial intelligence (AI) has made significant advances in radiology. Nonetheless, challenges in AI development, validation, and reproducibility persist, primarily due to the lack of high-quality, large-scale, standardized data across the world. Addressing these challenges requires comprehensive standardization of medical imaging data and seamless integration with structured medical data.Developed by the Observational Health Data Sciences and Informatics community, the OMOP Common Data Model enables large-scale international collaborations with structured medical data. It ensures syntactic and semantic interoperability, while supporting the privacy-protected distribution of research across borders. The recently proposed Medical Imaging Common Data Model is designed to encompass all DICOM-formatted medical imaging data and integrate imaging-derived features with clinical data, ensuring their provenance.The harmonization of medical imaging data and its seamless integration with structured clinical data at a global scale will pave the way for advanced AI research in radiology. This standardization will enable federated learning, ensuring privacy-preserving collaboration across institutions and promoting equitable AI through the inclusion of diverse patient populations. Moreover, it will facilitate the development of foundation models trained on large-scale, multimodal datasets, serving as powerful starting points for specialized AI applications. Objective and transparent algorithm validation on a standardized data infrastructure will enhance reproducibility and interoperability of AI systems, driving innovation and reliability in clinical applications.

Authors

  • Kyulee Jeon
    From the Department of Biomedical Systems Informatics, Yonsei University, Seoul, South Korea (K.J., S.C.Y.); Institution for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea (K.J., S.C.Y.); Biomedical Informatics and Data Science, Johns Hopkins University, Baltimore, MD (W.Y.P., P.N.); Department of Radiology, University of Pennsylvania, Philadelphia, PA (C.E.K.); and Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea (S.H.Y.).
  • Woo Yeon Park
  • Charles E Kahn
    Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA.
  • Paul Nagy
    Department of Radiology, Johns Hopkins Medical Institute, Baltimore, Maryland.
  • Seng Chan You
    Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea.
  • Soon Ho Yoon
    Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).