Artificial intelligence for response prediction and personalisation in radiation oncology.

Journal: Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
Published Date:

Abstract

Artificial intelligence (AI) systems may personalise radiotherapy by assessing complex and multifaceted patient data and predicting tumour and normal tissue responses to radiotherapy. Here we describe three distinct generations of AI systems, namely personalised radiotherapy based on pretreatment data, response-driven radiotherapy and dynamically optimised radiotherapy. Finally, we discuss the main challenges in clinical translation of AI systems for radiotherapy personalisation.

Authors

  • Alex Zwanenburg
    National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
  • Gareth Price
    c The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust , Manchester , UK.
  • Steffen Löck
    National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.