What could be the role of genetic tests and machine learning of AXIN2 variant dominance in non-syndromic hypodontia? A case-control study in orthodontically treated patients.
Journal:
Progress in orthodontics
PMID:
39183201
Abstract
BACKGROUND: Hypodontia is the most prevalent dental anomaly in humans, and is primarily attributed to genetic factors. Although genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNP) associated with hypodontia, genetic risk assessment remains challenging due to population-specific SNP variants. Therefore, we aimed to conducted a genetic analysis and developed a machine-learning-based predictive model to examine the association between previously reported SNPs and hypodontia in the Saudi Arabian population. Our case-control study included 106 participants (aged 8-50 years; 64 females and 42 males), comprising 54 hypodontia cases and 52 controls. We utilized TaqMan Real-Time Polymerase Chain Reaction and allelic genotyping to analyze three selected SNPs (AXIN2: rs2240308, PAX9: rs61754301, and MSX1: rs12532) in unstimulated whole saliva samples. The chi-square test, multinomial logistic regression, and machine-learning techniques were used to assess genetic risk by using odds ratios (ORs) for multiple target variables.