Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images.

Journal: Physics in medicine and biology
Published Date:

Abstract

Deep learning shows promise in autosegmentation of head and neck cancer (HNC) primary tumours (GTV-T) and nodal metastases (GTV-N). However, errors such as including non-tumour regions or missing nodal metastases still occur. Conventional methods often make overconfident predictions, compromising reliability. Incorporating uncertainty estimation, which provides calibrated confidence intervals can address this issue. Our aim was to investigate the efficacy of various uncertainty estimation methods in improving segmentation reliability. We evaluated their confidence levels in voxel predictions and ability to reveal potential segmentation errors.We retrospectively collected data from 567 HNC patients with diverse cancer sites and multi-modality images (CT, PET, T1-, and T2-weighted MRI) along with their clinical GTV-T/N delineations. Using the nnUNet 3D segmentation pipeline, we compared seven uncertainty estimation methods, evaluating them based on segmentation accuracy (Dice similarity coefficient, DSC), confidence calibration (Expected Calibration Error, ECE), and their ability to reveal segmentation errors (Uncertainty-Error overlap using DSC, UE-DSC).Evaluated on the hold-out test dataset (= 97), the median DSC scores for GTV-T and GTV-N segmentation across all uncertainty estimation methods had a narrow range, from 0.73 to 0.76 and 0.78 to 0.80, respectively. In contrast, the median ECE exhibited a wider range, from 0.30 to 0.12 for GTV-T and 0.25 to 0.09 for GTV-N. Similarly, the median UE-DSC also ranged broadly, from 0.21 to 0.38 for GTV-T and 0.22 to 0.36 for GTV-N. A probabilistic network-PhiSeg method consistently demonstrated the best performance in terms of ECE and UE-DSC.Our study highlights the importance of uncertainty estimation in enhancing the reliability of deep learning for autosegmentation of HNC GTV. The results show that while segmentation accuracy can be similar across methods, their reliability, measured by calibration error and uncertainty-error overlap, varies significantly. Used with visualisation maps, these methods may effectively pinpoint uncertainties and potential errors at the voxel level.

Authors

  • Jintao Ren
    Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
  • Jonas Teuwen
    Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
  • Jasper Nijkamp
    Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
  • Mathis Rasmussen
    Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark.
  • Zeno Gouw
    Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
  • Jesper Grau Eriksen
    Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark.
  • Jan-Jakob Sonke
    Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.
  • Stine Korreman
    Danish Center for Particle Therapy & Department of Oncology, Aarhus University Hospital, Denmark.