Automated System to Capture Patient Symptoms From Multitype Japanese Clinical Texts: Retrospective Study.
Journal:
JMIR medical informatics
PMID:
39316418
Abstract
BACKGROUND: Natural language processing (NLP) techniques can be used to analyze large amounts of electronic health record texts, which encompasses various types of patient information such as quality of life, effectiveness of treatments, and adverse drug event (ADE) signals. As different aspects of a patient's status are stored in different types of documents, we propose an NLP system capable of processing 6 types of documents: physician progress notes, discharge summaries, radiology reports, radioisotope reports, nursing records, and pharmacist progress notes.