A machine learning model for early diagnosis of type 1 Gaucher disease using real-life data.
Journal:
Journal of clinical epidemiology
Published Date:
Sep 6, 2024
Abstract
OBJECTIVE: The diagnosis of Gaucher disease (GD) presents a major challenge due to the high variability and low specificity of its clinical characteristics, along with limited physician awareness of the disease's early symptoms. Early and accurate diagnosis is important to enable effective treatment decisions, prevent unnecessary testing, and facilitate genetic counseling. This study aimed to develop a machine learning (ML) model for GD screening and GD early diagnosis based on real-world clinical data using the Maccabi Healthcare Services electronic database, which contains 20 years of longitudinal data on approximately 2.6 million patients.