Clinical feasibility of a deep learning approach for conventional and synthetic diffusion-weighted imaging in breast cancer: Qualitative and quantitative analyses.

Journal: European journal of radiology
PMID:

Abstract

PURPOSE: In this study, we aimed to investigate the clinical feasibility of deep learning (DL)-based reconstruction applied to conventional diffusion-weighted imaging (cDWI) and synthetic diffusion-weighted imaging (sDWI) by comparing the DL reconstructions to cDWIs and sDWIs in patients with various breast malignancies.

Authors

  • Eun Cho
    Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, 11 Samjeongja-ro, Seongsan-gu, Changwon 51472, Republic of Korea. Electronic address: sgeisilver@naver.com.
  • Hye Jin Baek
  • Eun Jung Jung
    Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, 11 Samjeongja-ro, Seongsan-gu, Changwon 51472, Republic of Korea. Electronic address: drjej@gnu.ac.kr.
  • Joonsung Lee
    From the Department of Radiology and Research Institute of Radiology (M.K., H.S.K., H.J.K., J.E.P., S.J.K.), Department of Clinical Epidemiology and Biostatistics (S.Y.P.), and Department of Neurosurgery (Y.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, South Korea; GE Healthcare Korea, Seoul, Korea (J.L.); GE Healthcare Canada, Calgary, Canada (M.R.L.); and Department of Radiology, University of Calgary, Calgary, Canada (M.R.L.).