Thickness Speed Progression Index: Machine Learning Approach for Keratoconus Detection.

Journal: American journal of ophthalmology
PMID:

Abstract

PURPOSE: To develop and validate a pachymetry-based machine learning (ML) index for differentiating keratoconus, keratoconus suspect, and normal corneas.

Authors

  • Shady T Awwad
    Department of Ophthalmology, American University of Beirut Medical Center (P.I., S.T.A.), Beirut, Lebanon. Electronic address: sawwad@gmail.com.
  • Bassel Hammoud
    1Biomedical Engineering Program and.
  • Jad F Assaf
    Faculty of Medicine, American University of Beirut (J.F.A., C.Z., P.B., M.C.), Beirut, Lebanon.
  • Lara Asroui
    From the Department of Ophthalmology (S.T.A., B.H., L.A., and C.J.M.), American University of Beirut Medical Center, Beirut, Lebanon.
  • James Bradley Randleman
    Cole Eye Institute (B.H. and J.B.R.), Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University (J.B.R.), Cleveland, Ohio, USA.
  • Cynthia J Roberts
    Departments of Ophthalmology & Visual Sciences and Biomedical Engineering (C.J.R.), The Ohio State University, Columbus, Ohio, USA.
  • Douglas D Koch
    Cullen Eye Institute (D.D.K.), Baylor College of Medicine, Houston, Texas, USA.
  • Jawad Kaisania
    Department of Computer Science (J.K. and S.E.), American University of Beirut, Beirut, Lebanon.
  • Carl-Joe Mehanna
    Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil, Creteil, France.
  • Shadi Elbassuoni
    Department of Computer Science (J.K. and S.E.), American University of Beirut, Beirut, Lebanon.